Neuron Silicon Interface
Mar. 26th, 2006 10:44 pmSource: IST Results, March 23, 2006
"European researchers have created an interface between mammalian neurons and silicon chips. The development is a crucial first step in the development of advanced technologies that combine silicon circuits with a mammal’s nervous system.
The ultimate applications are potentially limitless. In the long term it will possibly enable the creation of very sophisticated neural prostheses to combat neurological disorders. What's more, it could allow the creation of organic computers that use living neurons as their CPU. "
(rat neuron on chip)(YUMMY!;)
"With the help of German microchip company Infineon, NACHIP placed 16,384 transistors and hundreds of capacitors on a chip just 1mm squared in size. ....Biologically NACHIP uses special proteins found in the brain to essentially glue the neurons to the chip. These proteins act as more than a simple adhesive, however. "They also provided the link between ionic channels of the neurons and semiconductor material in a way that neural electrical signals could be passed to the silicon chip," says Vassanelli.
Once there, that signal can be recorded using the chip's transistors. What's more, the neurons can also be stimulated through the capacitors. This is what enables the two-way communications...." read the rest of the article
"European researchers have created an interface between mammalian neurons and silicon chips. The development is a crucial first step in the development of advanced technologies that combine silicon circuits with a mammal’s nervous system.
The ultimate applications are potentially limitless. In the long term it will possibly enable the creation of very sophisticated neural prostheses to combat neurological disorders. What's more, it could allow the creation of organic computers that use living neurons as their CPU. "

(rat neuron on chip)(YUMMY!;)
"With the help of German microchip company Infineon, NACHIP placed 16,384 transistors and hundreds of capacitors on a chip just 1mm squared in size. ....Biologically NACHIP uses special proteins found in the brain to essentially glue the neurons to the chip. These proteins act as more than a simple adhesive, however. "They also provided the link between ionic channels of the neurons and semiconductor material in a way that neural electrical signals could be passed to the silicon chip," says Vassanelli.
Once there, that signal can be recorded using the chip's transistors. What's more, the neurons can also be stimulated through the capacitors. This is what enables the two-way communications...." read the rest of the article